8 research outputs found

    A volumetric display for visual, tactile and audio presentation using acoustic trapping

    Get PDF
    Science-fiction movies such as Star Wars portray volumetric systems that not only provide visual but also tactile and audible 3D content. Displays, based on swept volume surfaces, holography, optophoretics, plasmonics, or lenticular lenslets, can create 3D visual content without the need for glasses or additional instrumentation. However, they are slow, have limited persistence of vision (POV) capabilities, and, most critically, rely on operating principles that cannot also produce tactile and auditive content. Here, we present for the first time a Multimodal Acoustic Trap Display (MATD): a mid-air volumetric display that can simultaneously deliver visual, auditory, and tactile content, using acoustophoresis as the single operating principle. Our system acoustically traps a particle and illuminates it with red, green, and blue light to control its colour as it quickly scans through our display volume. Using time multiplexing with a secondary trap, amplitude modulation and phase minimization, the MATD delivers simultaneous auditive and tactile content. The system demonstrates particle speeds of up to 8.75m/s and 3.75m/s in the vertical and horizontal directions respectively, offering particle manipulation capabilities superior to other optical or acoustic approaches demonstrated to date. Beyond enabling simultaneous visual, tactile and auditive content, our approach and techniques offer opportunities for non-contact, high-speed manipulation of matter, with applications in computational fabrication and biomedicine

    Standing waves for acoustic levitation

    Get PDF
    Standing waves are the most popular method to achieve acoustic trapping. Particles with greater acoustic impedance than the propagation medium will be trapped at the pressure nodes of a standing wave. Acoustic trapping can be used to hold particles of various materials and sizes, without the need of a close-loop controlling system. Acoustic levitation is a helpful and versatile tool for biomaterials and chemistry, with applications in spectroscopy and lab-on-a-droplet procedures. In this chapter, multiple methods are presented to simulate the acoustic field generated by one or multiple emitters. From the acoustic field, models such as the Gor'kov potential or the Flux Integral are applied to calculate the force exerted on the levitated particles. The position and angle of the acoustic emitters play a fundamental role, thus we analyse commonly used configurations such as emitter and reflector, two opposed emitters, or arrangements using phased arrays

    Isotopic evidence for residential mobility of farming communities during the transition to agriculture in Britain

    Get PDF
    Development of agriculture is often assumed to be accompanied by a decline in residential mobility, and sedentism is frequently proposed to provide the basis for economic intensification, population growth and increasing social complexity. In Britain, however, the nature of the agricultural transition (ca 4000 BC) and its effect on residence patterns has been intensely debated. Some authors attribute the transition to the arrival of populations who practised a system of sedentary intensive mixed farming similar to that of the very earliest agricultural regimes in central Europe, ca 5500 BC, with cultivation of crops in fixed plots and livestock keeping close to permanently occupied farmsteads. Others argue that local hunter–gatherers within Britain adopted selected elements of a farming economy and retained a mobile way of life. We use strontium and oxygen isotope analysis of tooth enamel from an Early Neolithic burial population in Gloucestershire, England, to evaluate the residence patterns of early farmers. Our results are consistent with the hypothesis that early farming communities in Britain were residentially mobile and were not fully sedentary. Results highlight the diverse nature of settlement strategies associated with early farming in Europe and are of wider significance to understanding the effect of the transition to agriculture on residence patterns

    Review of Progress in Acoustic Levitation

    No full text

    Laser/Light Applications in Otolaryngology

    No full text
    Lasers have been ubiquitous in otolaryngology since Jako and Strong first introduced the CO2 laser in 1970. Since that time lasers have traditionally been used like a scalpel, able to cut and cauterize precisely. More recently, the role of lasers has been expanded in otolaryngology depending on the specific laser wavelength and dosimetry parameters. Not only can lasers be utilized to extirpate cancer, but also used to recover hearing, improve the airway, treat epistaxis, and even break up salivary stones for easy removal. The individual characteristics of the laser are important for the specific application. However, the otolaryngologist often works in areas that are either difficult to access using classic methods or require extreme precision, and the mechanism and method for delivering the laser energy is often equally important. In this chapter, we describe the many ways lasers are used in otolaryngology treat both benign conditions to life-threatening diseases. New and innovative applications are also discussed
    corecore